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Abztract

Let Y,... ,Y, be n mutually independent, nonnegative random variables such that
for each i = 1,...,n,Y has an absolutely continuous distribution function F(z;Oi) =
F(f), where 8 > 0, and F(-) has support [0,oo). We show that given Y - Y+i > 0
for all i = 1,... ,n - 1, the necessary and sufficient condition for the random variables
Y- Y2 ,... ,Y, 1 - Y, and Y,, to be conditionally mutually independent is that for each
i = 1,... ,n,Y has an exponential distribution.
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1. Introduction

The problem of characterizing the exponential distributions has been studied in the

literature for a long time. For most recent references, for examples, see Ahsanul]ah (1984),

Gather (1989) and Too and Lin (1989) among the many papers in this research area.

In this paper, we consider the following problem. Let Y1,... ,Y be n mutually inde-

pendent, nonnegative random variables such that for each i = 1,...Yn, Y has an absolutely

continuous distribution function F(x;O) = F(t), where e1 > 0, and F(.) has support

[0, oo). Let A denote the event that Y1 - Y+1 > 0 for all i = 1,..., n- 1. Given A, we seek

a necessary and sufficient condition for Y - Y2,...,Yn 1 - Y,, and Y to be conditionally

mutually independent. We find that the N & S condition is: for each i = 1,..., n, Y has

an exponential distribution. The main result is given in the next section.

2. The main result

Let Y,... , Y, denote n mutually independent, nonnegative random variables such

that Y has absolutely continuous distribution function Fi(x) and density function fi(x),

where fi(x) > 0 for all x > 0. Let A be the event that Y -Y+j > 0 for all i = 1,... ,n- 1.

First, we have the following lemma.

Lemma 1. Conditional on the event A, Y1 - Y2 and Y2 are independent iff Y has an

exponential distribution.

Proof: (Sufficiency) The conditional independence implies that for fixed a > 0 and b > 0,

P{Y - Y 2 > a, Y2 > bIA" - P{Y - Y 2 > ajA}P{Y2 > bIA}. (1)
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After some computations, from (1), we can obtain:

P{Yj - Y2 > 0, Y2 > b, Y2 - Y3 > 0,..., Y,,-, - Y,,, > 01

P{Y1 -Y 2 >0, Y2 -Y 3 >,...,Y-I- Y, > O

P{Yj - Y2 > a, Y2 > b, Y2 - Y3 > 0,..., Yt- 1 - Ynt > 0}
P{Yj - Y2 > a, Y2 - Y3 > O,...,Yn-I - Yn > 0}

f0>bPY >y+a, Y3<y, Y3-Y 4 >O,...,Yn-I-Y > O}f 2 (y)dy (2)

f'=o P{Y >y+a, Y3 < y, Y3- Y4 > 0,...,Y- i - Y > 0)f 2 (y)dy

c!b[ - F1 (y + a)]G(y)f2 (y)dy_fy-bl' = gb (a) (say),
fy=o[1 - F1(y + a)]G(y)f 2(y)dy

where G(y) = P{Y3 < y, Y 3-Y 4 > 0,... ,Y-_-Y, > 0), and the last equality is obtained

due to the assumption that Y1,... ,Yn are mutually independent. Note that for each fixed

b 0 0, Hb (a) is a constant function of the variable a. Thus, IHb(a) = 0, which yields

00 0a

M,(b) fi (y + a)G(y)f2 y)dy x [1 - Fi(y + a)IC(y)dy
f=b J=0

L [1 - F1(y + a)]G(y)f2 (y)dy x f,(y + a) (y)f2 (y)dy
f=b ----0

=0.

Letting a = 0 and differentiating MO(b) with respect to the variable b yields the following:

f I (b) f=o f, (y)G(y) f 2 (y)dy1 - FICb) -y f0 [ 1 - F, (y)IG (y)f2 (y) dy )

which is a positive constant since by the assumption, Fj has support 10, oo) for each

i- ,. ,n.

Since b can be any positive number, thus (3) implies that F1 (.) is an exponential

distribution with mean f,,[. - FI (y)IG(Y)f 2(y)dy/fy= 0 f(y)G(i,)f2(y)dy.

(Necessity) Since F 'islln exponential distribution, we can see the right-hand-side of (2)

is inclependfnt of the value a and hence Hb(a) is a constant function of the variable a,

whichK imp-lies (1).C Yus, given A, 1Y1 - Y 2 and Y2 are .onditionally independent.
.'. .. - ..-... -. '%1

Remark: In Lemrmra;'1;-We'hy require F(.) has support [0,oo) for each i = 1,... ,n. It is

not necessary that ti. I;... ,n, belong to the same class of scale family distributions.
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Theorem 1. Suppose that Fi,i = 1,...,n, belong to the same class of scale family distri-

butions, that is, Fi(x) = F(x;Oi) = F('), 8i > 0, where the distribution function F(.)

has support [0, oo). Then, conditional on the event A, a necessary and sufficient condition

for Y1 - Y2 , Y2 - Y3 ,...,Y-- Y, and Y, to be mutually independent is that for each

I. = 1,..., n, Y has an exponential distribution.

Proof: (Sufficie-Acy) Given the event A, the conditionally mutual independence among

Yj - Y2 ,...,Y,-I - Y, and Y implies that given A, Y1 - Y2 and Y2 are conditionally

independent. Then, by Lemma 1, Y1 has an exponential distribution. By the assumption,

Yi has distribution F belonging to the same class of scale family distributions for each

i = 1,...,n, which implies that Yi has an exponential distribution for each i = 2,...,n

since F1 is an exponential distribution function.

(Necessity) See Lemma 2.1 (ii) of Sackrowitz and Samuel-Cahn (1984).
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